現在對高性能的輕質合金材料的需求越來越強烈,特別是在航空航天、汽車、醫療等領域,對于新穎的金屬基復合材料的設計與制備正得到越來越多研究者的關注。但是由于加工的難度使得使用收到了很大的限制,南極熊覺得,3D打印的出現可能改變這一現狀。

借助顆粒增強獲得的硅基復合材料可顯著提高傳統的鋁硅合金的力學性能,已經被廣泛的研究并在實際工程中獲得應用,這其中常用的增強體包括Al2O3、TiC、TiB、SiC等。用于激光增材制造的金屬材料包括了不銹鋼、工具鋼、鈦合金、鎳基高溫合金、Co-Cr-Mo合金、鋁合金等,但對于金屬基復合材料的激光增材制造研究還相對較少。 南京航空航天大學在鋁基納米復合材料的3D打印制備方法有著一定的成果。接下來我們一起看一下。

梯度的作用

目前對于激光增材制造的顆粒增強鋁基復合材料,在成形加工過程中主要面臨這樣一些問題:

1.由于鋁對激光具有很高的激光反射率,通常低功率激光器難以使得鋁合金發生完全熔化,增強顆粒的加入能夠在程度上提高粉體對激光的吸收率,但增強顆粒加入過多則會導致材料延伸性能下降;

2.研究表明,降低增強體的顆粒尺寸達到納米級可以有效提高金屬基復合材料的機械性能,如提高強度和減少裂紋,但是當增強顆粒的尺寸減小至納米尺度時,顆粒之間會因強烈的范德瓦爾力以及極大的表面張力而緊密地團聚在一起,從而很不利于增強顆粒在基體中的均勻分散,在激光增材制造過程中,所形成熔池中特有的Marongoni流可以起到均勻分散第二相的作用,但該Marangoni流又與熔池的溫度場緊密相連;

3.由于通常加入的增強顆粒為陶瓷相,而陶瓷相與基體相之間的潤濕性很差,同時它們之間的熱膨脹系數差異也往往較大,這就導致在成形過程中形成的液相不能均勻鋪展,同時在隨后的凝固過程中產生較大的收縮應力而出現裂紋。

為解決上述存在的技術問題,南京航空航天大學提供一種基于SLM成形的鋁基納米復合材料,用于激光增材技術領域,有效的解決鋁基納米復合材料在激光增材過程中工藝性能與力學性能不匹配、增強顆粒分布不均勻以及陶瓷相與基材相之間潤濕性較差的問題,使得所獲得的產品具備良好的界面結合以及優異的力學性能。

南京航空航天大學對于鋁基納米復合材料的加工是在高純氬氣保護氣氛環境中進行的,成形過程中維持在正壓0.9-1.2atm。加工過程中,加工參數和粉體性能是影響激光最終成形件的兩個最主要因素。從粉體成分角度考慮,稀土元素和陶瓷顆粒的添加必然會增強鋁合金粉體對激光的吸收率,從而可保證在的激光功率下熔池具有充足的液相量。一方面,添加的陶瓷相其粒徑大小、密度以及質量分數均會影響到激光吸收率。另一方面,激光成形工藝參數同樣會顯著影響到鋁基納米復合材料成形過程中熔池的熱動力學特性以及隨后的顯微組織和性能。


針對這些因素的考慮,南京航空航天大學的方案具有如下優點:

- 精當的比例 

粉末成分包括了鋁硅合金粉末、稀土相和陶瓷相,其中稀土相為La、Nd、Sm或Y中的任意一種,所選擇的這些稀土元素按照其熱物性(熔點、熱膨脹系數和表面張力)處于基體相和增強相之間的原則進行選取,保證了在激光加工過程中陶瓷增強相與基體之間良好的潤濕性能和避免因熱物性差異過大而導致在凝固過程中的開裂情況,其含量控制在0.3-0.8wt%,避免加入過多導致性能惡化;陶瓷顆粒選用碳化物,旨在成形過程中產生原位反應,改善界面結構,在尺寸方面選擇納米尺寸,則借助小尺寸和表界面效應有效提高材料的強韌性,此外陶瓷相的添加還可有效提高粉末對激光的吸收率,提高粉末的加工性能,但其添加含量需控制在4-6wt%,保證材料不會因增強相的過高而引起延展性下降。

- 梯度界面層

鋁基納米復合材料在增強相與基體相之間形成一定厚度的梯度界面層,從基體相到增強相Al及稀土元素成分呈現梯度變化,在加載過程中,增強顆粒處往往容易造成應力集中而導致開裂情況,但這種梯度界面層的存在則有效緩解了應力集中的發生,從而對材料起到了強韌化的作用;同時增強顆粒由于稀土元素的加入變得更加的細小和圓潤,也減小了材料內部在加載中發生應力集中的幾率。

- 均勻的粉體

利用高能球磨作用實現對陶瓷增強相和稀土相的包覆作用,借助二次球磨作用,有效獲取滿足于SLM成形工藝的粉體,即具有良好的流動性、球形度以及均勻的成分分布、較窄的粒徑分布,該粉體制備方法簡單、操作簡便。

-控制有效體能量密度

通過優化SLM成形中有效體能量密度來控制獲得良好的成形質量,有效體能量密度的作用體現在對激光加工中熔池的穩定性、溫度場、流場以及伴隨的激光顯微組織結構的影響,綜合的反映了粉體物性和加工參數這兩者對SLM加工過程的影響。南京航空航天大學的制造工藝所形成的熔池具有很好的穩定性,成形件表面具有光滑并呈現出波紋狀的熔道軌跡,同時幾乎看不到球化效應并獲得近全致密的結構。顯微組織分析表明增強顆粒得到均勻的彌散分布,基體晶粒細小并呈胞狀結構生長。


2017年06月28日

鋁粉材料行業:政策支持高端產品發展
世界上都有哪些金屬3D打印材料?

上一篇

下一篇

南航大學鋁基納米復合材料的3D打印制備方法

添加時間:

本網站由阿里云提供云計算及安全服務 Powered by CloudDream
中文无码波霸